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Nomenclature
a = speed of sound
C = normalized density-viscosity product,

Cp = pressure coefficient, 2(p — px)/pxUl,
c = chord length
cfx = local skin friction coefficient for

circumferential flow, 2(/jLdu/dz)w/peul
f = transformed circumferential component of

vector potential, i^(0, r, z)/(2£r/r0)1/2

G = transformed radial component of vector
potential (alternative), (ve/qe)g

g = transformed radial component of vector
potential, w>2(0, r, z)/r(2gr/r0)l/2ve

H = total enthalpy
Mx = Mach number of undisturbed stream, UJa
p = static pressure
qe = resultant external velocity,
r = radial distance along generator, measured

from cone apex, O
r() = radius of sphere centered at O, intersecting

leading edge of streamwise section
S = enthalpy parameter, HIHe — 1
T = static temperature
Ux = velocity of undisturbed stream
(w, v, w) = velocity components in (0, r, z) directions
v = spanwise velocity, — v
x = arc distance around surface, r00
y = spanwise distance, r() - r
z = distance normal to surface
y = ratio of principal specific heat capacities of gas
A = transformed boundary-layer thickness
8 * = displacement thickness of circumferential

flow, S'o (1 - pulpeue) dz
77 = similarity variable used in present work,

ue /f, p dz/V2fr/r0
VK-C = similarity variable used by Kaups

and Cebeci, Vve/pe/zer0 Jg p dz
0 = polar angle in developed plane, measured

from stagnation line
AH A 2 = sweep angles of leading and trailing edges
fji = coefficient of viscosity of gas
f = transformed circumferential coordinate,

So Pet*>euer() d0
p = mass density of gas
o- = Prandtl number of gas
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<Ai» *fe = circumferential and radial components of
vector potential

Subscripts
e = boundary-layer edge
s = stagnation line
w = wall
00 = freestream

Superscript
' = differentiation with respect to 77

Introduction

C URRENT interest in laminar flow technology has led to
a demand for very accurate computer codes to generate

velocity and temperature profiles in the laminar boundary
layer on a swept wing. These profiles are required as input
data for boundary-layer stability calculations, for which pur-
pose smooth second derivatives with respect to z are neces-
sary. For the greatest generality a fully three-dimensional
boundary-layer method would be used, but for practical pur-
poses the conical flow approximation of Kaups and Cebeci1

provides a useful quasi-two-dimensional approach to analyz-
ing the boundary layer on a swept, tapered wing of high AR,
at a section where the isobars are essentially straight.

The Kaups-Cebeci computer code,2 which has been widely
distributed with the Sally stability code,3 uses the Keller box
method4 to solve the boundary-layer equations after applying
the transformation described in Ref. 1. Two types of difficulty
arise in running the Kaups-Cebeci code, however. Firstly, A
at the front stagnation line can vary by several orders of
magnitude from case-to-case, so that initial values for the z-
grid parameters have to be found by trial-and-error; A also
varies strongly with streamwise distance. This is because the
particular boundary-layer transformation used by Kaups and
Cebeci is inappropriate. Secondly, and more seriously, severe
oscillations in the second derivatives frequently occur close
to the wall. This phenomenon may be attributed to the fact
that the two-point centered-difference scheme, used for
streamwise derivatives in the Keller box method, is only neu-
trally stable. Irregularities introduced into the computation
either by poor choice of initial z grid or by lack of smoothness
of the input pressure distribution are not well damped and
cause the wiggles mentioned earlier. Both of these difficulties
will be addressed here.

Boundary-Layer Equations
Following Kaups and Cebeci,1 a section of a straight-ta-

pered wing is treated as part of a conical wing with its apparent
apex at O, as shown in Fig. 1. The cone section is defined by
the line-of-flight wing section whose leading edge intersects
r() centered at O, and curvilinear, orthogonal coordinates (9,
r, and z) are adopted, with r and 0 lying in the surface. The
case of an infinite swept wing (ISW) corresponds to r0 —» °°.
The boundary-layer equations, given by Mager5 for general
curvilinear, orthogonal coordinates, then become

f U du du du
P I- — + v— + w— +r 30 dr dz

' U dv dvp I -— + v —P l r dS
dv. w — — —

dr dz r

I dp d dU
•- --— + — hu —

r 36 dz V dz
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dp d f dv\ ^ .
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Fig. 1 Coordinate system for conical swept wing.
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The relevant boundary conditions are

at z = 0, u — v = 0,

A Uand — = — ) or H =
dz \ dz .

(if)
as z u—>ue, //

Following Kaups and Cebeci, it is now assumed that the radial
pressure gradient d/?/dr is negligible, and dujdr and dve/dr are
similarly neglected. Continuity is satisfied by writing6

"VI - "V2 1 I Wl , dl/f2 \ /^pu = ——, prv = ——, pw = -- —— + —— (2)" rw ' " r»^ ' " ~ \ r>/3 n*. / v ^
^Ai
dz^

afe
az ' d6 dr

Equations (2) differ somewhat from the comparable relations
used by Kaups and Cebeci.

Boundary-Layer Transformation
Kaups and Cebeci use r)K_c, which superficially resembles

the generalized Blasius variable. However, this does not cor-
rectly fulfill the main objective of using transformations in
boundary-layer computations, which is to scale out the bound-
ary-layer growth, so that roughly the same 77 grid can be used
throughout; and consequently, to eliminate the leading-edge
singularity so that the transformed equations reduce naturally
to ordinary differential equations (ODEs) of universal form
at the boundary-layer origin. It is also to be noted that the
length scale in the denominator of the square-root in the
definition of r\K_c is a constant, in place of the streamwise
distance used in the Blasius variable, and so the scaling does
not conform with the expected parabolic growth of the bound-
ary layer. Additionally, this transformation fails when ve =
0, and therefore, cannot be used for wings with forward-swept
trailing edges, neither does it give a proper limit to the ISW
equations when r0 — > oo.

Here, 77 is introduced in order to remedy these deficiencies,
and for convenience £ is also used. Transformed dependent
variables /, g, and S are introduced which, when the weak
dependency of these variables on r is neglected in accordance
with the conical flow approximation, results in a generaliza-
tion of the well-known Levy7 equations.

Some further minor changes in variables are convenient.
Since all derivatives with respect to r have now been ne-
glected, we may set r = r0 and x = r06 so that x is the distance
from the stagnation line around the curve defined by the
intersection of the conical wing with r0, centered at O. For

an ISW, x becomes the usual surface distance from stagnation,
measured around a section normal to the leading edge. Also,
following conventional notation for an ISW, put y = r0 - r
and v=—v. f and 17 now become the standard Levy variables,

^ L P ^ Z 0)
.e.,

and the transformed boundary-layer equations take the final
form

(cry + (/+ i.5Dg)f" + |8j(i + s - D
+ Ey,(l + S - g'2)] + Df'(f' -g')

(Cg"y l.5Dg)g" + /3*f'(f - g')

(4a)

(4b)

(CS')r + o-(/ + 1.5Dg)S' - 2(1 - a-)

x [C(EJ'f" + E^V)]' = 2<* (/' ^- - 5' fj (4c)

where

/)), = 2 d /;/ ue
d /, f

/3* = 2

(y - i) r (5)

^v» ^ = me

I + mf

The velocity, temperature, and density ratios are given by

ulue = /', vlve - g'

T/Te = pjp = (1 + me)(l + 5) - (mexf'2 +

and the boundary conditions are

at T, = 0, / = /„,, /' = g = g

(6)

and either S = or S' = (7)

as

The previous system has the proper limiting behavior when
r() —> oo, when it reduces to an obvious generalization of the
Levy equations for the ISW.

The parameter D is related to the divergence effect of taper
and is zero for an ISW. ft* is simply related to this parameter
by P*v = (ue/ve)2D, but is defined separately to avoid diffi-
culties when ve = 0.

The right-hand sides of Eq. (4) vanish at the boundary-
layer origin, leaving a set of ODEs closely related to the
equations at the origin of an ISW boundary layer, and do not
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need the type of special treatment required in the Kaups-
Cebeci formulation. Depending on whether the boundary layer
originates at a stagnation line or a sharp leading edge, we
have at x = 0 either, respectively,

j8Vy = 1 +• A,

or

= 0, Ds =

f = j8* = Ds = 0

\dx (8a)

(8b)

The new transformation eliminates all of the difficulties
associated with the Kaups-Cebeci transformation, with one
exception. There is still a weak singularity at a point where
ve vanishes, when by definition g becomes infinite. If neces-
sary, this singularity can be easily removed by redefining the
spanwise variable as G = (ve/qe)g, where qe - (u2

e +
v^)1/2, so that G' = vlqe. Substitution of this expression into
Eqs. (4) results in the modified equations given in Ref. 8.

Numerical Method and Results
A Fortran code, QICTP1, has been written to solve the

boundary-layer equations in the form just described. The geo-
metric treatment of the wing is similar to that of Kaups and
Cebeci, as is the method of calculation of external velocity
components from an input pressure distribution. The numer-
ical method used to solve Eqs. (4) (described in more detail
in Ref. 8) is of the differential-difference type, in which £
derivatives are approximated by three-point backward dif-
ferences, resulting in a system of coupled ODEs with inde-
pendent variable 17 to be solved at successive £ stations, march-
ing downstream. The two momentum equations and the energy
equation are solved in sequence in an iterative loop as if
uncoupled, the ^-momentum equation being quasilinearized.
Invariant imbedding is used to recast each of the three ODEs
as an initial-value problem, the resulting stiff nonlinear equa-
tions being solved using a fourth-order accurate, implicit, stiffly
stable Gear9 method. The use of fully implicit £ discretization
eliminates the instability problem of the Keller box method,
mentioned in the Introduction.

A second version of the code, QICTP2, incorporates the
modifications outlined at the end of the previous section.

Comparisons are presented in Ref. 8 between results of the
QICTP1 code and the Kaups-Cebeci code, which show ex-
cellent agreement for both velocity profiles and integral quan-
tities; an example is given in Fig. 2. However, as Fig. 3 shows,
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Fig. 2 Variation of cfx with x/c for boundary layer on upper surface
of laminar flow section, Mm = 0.1, Aj = 45 deg, A2 = 15 deg,
zero suction (case 1 of Ref. 8). Dashed curve shows pressure distri-
bution.

PRESENT METHOD (FINE X-GRID)
PRESENT METHOD (COARSE X-GRID)
KAUPS-CEBECI (FINE X-GRID)

— KAUPS-CEBECI (COARSE X-GRID)

Fig. 3 Profiles of second derivative of circumferential velocity at
x/c = 0.1063; same flow conditions as for Fig. 2. Coarse and fine grids
have 45 and 90 x intervals, respectively.

the Kaups-Cebeci code (specifically, in the version distrib-
uted with Sally3) outputs second-derivative profiles exhibiting
severe oscillations near the surface, which are absent from
the QICTP1 results. Although in this case the amplitude of
the oscillation is reduced when a finer x grid is used, the
occurrence of the oscillations is unpredictable and may be
provoked at the start of the computation by an unsuitable
choice of grid normal to the surface.

Conclusions
The new transformation described previously has significant

advantages over that used by Kaups and Cebeci for the com-
putation of laminar boundary layers on swept, tapered wings.
Because the boundary-layer growth is correctly incorporated
into the new scalings, starting computations at the stagnation
line is more straightforward, there are no significant stream-
wise variations of transformed boundary-layer thickness, and
streamwise derivatives are minimized. Most importantly,
computations using the new transformation, employing three-
point backward streamwise differencing, are free of the spu-
rious oscillations in second-derivative profiles that frequently
occur in solutions of the Kaups-Cebeci equations using the
Keller box method.
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Nomenclature
Ch C(h Cm = lift, drag, and moment coefficients
C^ = blowing coefficient, rhjVj/q^c
c = chord
M = Mach number
rhj = mass flow rate of jet, pjsVj sin </>
qx = dynamic pressure, \pJJL
Rec = chord Reynolds number, U^clv^
s = slot width
t+ = nondimensional time, tUJc
U^ — freestream velocity
Vj = velocity of jet
;c, y = coordinates of moving reference frame

attached to airfoil
a = angle of attack
ah = onset angle of attack (blowing or suction)
v = dynamic viscosity
f, 77 = transformed coordinates
p = density
(/> = jet blowing angle, 10 deg
11+ = nondimensional pitch rate, toc/U^

Introduction

A TTEMPTS have been made by numerous researchers to
harness the large aerodynamic forces temporarily gen-

erated on a streamlined body rapidly pitched beyond its steady
stall angle of attack. Dynamically pitched airfoils exhibit max-
imum lift coefficients two or three times the static maximum
lift.1 Uncontrolled, the ensuing unsteady motion results in
dynamic stall. The dynamic stall phenomenon arises in several
applications: wind turbine blades, helicopter rotor blades, jet
engine compressor blades, and rapidly pitched airfoils. The
current study compares and contrasts two approaches to dy-
namic stall suppression: 1) suction and 2) nearly tangential
blowing, applied in the vicinity of the leading edge of a NACA
0015 airfoil.

Dynamic stall suppression via leading-edge suction and
leading-edge tangential blowing focuses on the removal of
low momentum fluid that accumulates along the airfoil upper
surface as it is pitched upward. Specifically, as the airfoil is
pitched up, the adverse pressure gradient along the upper
surface promotes the forward propagation of reverse-flowing
fluid into the leading-edge region. The thickening of this low
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momentum fluid region near the leading edge ultimately forces
an upward displacement and "kinking" of the feeding shear
layer. The kinking of this shear layer marks the initial for-
mation of the dynamic stall vortex. Suction experiments by
Karim and Acharya2 demonstrated that the key to dynamic-
stall-vortex-formation suppression is to remove fluid from un-
derneath the leading-edge-originating shear layer at the same
rate as the reverse-flowing-fluid-pooling accumulation rate.
Results by Towne3 verify their findings numerically and dem-
onstrate that tangential blowing applied upstream and/or in
this pooling region is also effective in eliminating the low
momentum region, and hence, in delaying dynamic stall vor-
tex (DSV) formation.

The flow regime of interest is one of low speed and low
Reynolds number. A compressible Navier-Stokes code de-
veloped by Visbal to numerically investigate dynamic stall4-5

is used. The nominal flow and pitch-rate conditions are M^
= 0.2, Rec = 2.4 x 104, and H+ = 0.2.

Numerical Methodology
The strong conservation law form of the two-dimensional

compressible Navier-Stokes equations are cast in an inertial
frame of reference using a general time-dependent coordinate
transformation to account for the motion of the body. Closure
of the system is provided by the perfect-gas law, Sutherland's
viscosity formula, and the assumption of a constant Prandtl
number.

Freestream conditions are imposed at the inflow boundary.
At the surface, no-slip adiabatic conditions are used. At the
outflow far-field boundary, velocity and density are extrap-
olated and pressure is set to the freestream pressure. For the
current simulation, an O-grid structure is employed. This ne-
cessitated the specification of periodic boundary conditions
at the O-grid cut by overlapping five grid points in the £
direction. To simulate the nearly tangential jet the velocity
at the slot location was specified with a given magnitude and
orientation. The pressure boundary condition was not mod-
ified at the slot. The flowfield for time-periodic flow at zero
angle of attack is used as the initial condition.

To avoid the expense of regridding at every time level, a
grid that is fixed relative to the airfoil was used. An extensive
grid study was conducted on mesh sizes ranging from 203 to
505 points in the f direction (circumferential) and 101 to 301
points in the 17 direction.3 Each grid was applied to a physical
domain that extends nominally 30 chord lengths away from
the airfoil. The current results were obtained on a 361 x 201
grid that had minimum £ and 77 spacings of 0.000082 and
0.00005c, respectively. No fewer than 21 grid points were used
to define the slot aperture. The governing equations were
numerically solved using the alternating direction implicit
approximate-factorization algorithm of Beam and Warming.6

Fourth-order explicit and second-order implicit spectral
damping was used to damp high-frequency numerical oscil-
lations and enhance stability behavior.

Results and Discussion
In a previous numerical study by Towne,3 nearly tangential

blowing was applied at a series of locations along the airfoil
upper surface to assess the effect of slot position on DSV
suppression. Based upon this work and the suction experiment
of Karim and Acharya,2 the comparison between suction and
blowing was conducted for a single slot position of width
0.00717c at x/c = 0.05. The selection of this position assured
that the slot was located upstream of the point at which the
DSV was seen to form in the natural (no-control) case. Pre-
vious work by Towne and Buter7 showed that blowing applied
aft of the natural DSV vortex formation point, while useful
for retarding the forward propagation of reverse flow from
the trailing edge, did not suppress the formation of the dy-
namic stall vortex.


